Large-eddy/Reynolds-averaged Navier–Stokes simulation of a supersonic reacting wall jet
نویسندگان
چکیده
This work presents results from large-eddy/Reynolds-averaged Navier–Stokes (LES/RANS) simulations of the well-known Burrows–Kurkov supersonic reacting wall-jet experiment. Generally good agreement with experimental mole fraction, stagnation temperature, and Pitot pressure profiles is obtained for non-reactive mixing of the hydrogen jet with a non-vitiated air stream. A lifted flame, stabilized between 15 and 20 cm downstream of the hydrogen jet, is formed for hydrogen injected into a vitiated air stream. Flame stabilization occurs closer to the hydrogen injection location when a three-dimensional combustor geometry (with boundary layer development resolved on all walls) is considered. Volumetric expansion of the reactive shear layer is accompanied by the formation of large eddies which interact strongly with the reaction zone. Time averaged predictions of the reaction zone structure show an under-prediction of the peak water concentration and stagnation temperature, relative to experimental data, but display generally good agreement with the extent of the reaction zone. Reactive scalar scatter plots indicate that the flame exhibits a transition from a partially-premixed flame structure, characterized by intermittent heat release, to a diffusion-flame structure that could probably be described by a strained laminar flamelet model. 2011 Published by Elsevier Inc. on behalf of The Combustion Institute.
منابع مشابه
Large eddy simulation of propane combustion in a planar trapped vortex combustor
Propane combustion in a trapped vortex combustor (TVC) is characterized via large eddy simulation coupled with filtered mass density function. A computational algorithm based on high order finite difference (FD) schemes, is employed to solve the Eulerian filtered compressible Navier-Stokes equations. In contrast, a Lagrangian Monte-Carlo solver based on the filtered mass density function is inv...
متن کاملTurbulent jet characteristics for axisymmetric and serrated nozzles
Turbulent jet large eddy simulations (LES) are performed at Mach 0.9 and Reynolds number around 10. Implicit large-eddy simulation (ILES) is employed, namely omitting explicit subgrid scale models. The Reynolds-averaged Navier-Stokes (RANS) solution is blended into the near wall region. This makes an overall hybrid LES-RANS approach. A Hamilton-Jacobi equation is applied to remove the disparate...
متن کاملOn the Reliability of Reynolds-averaged Navier Stokes Prediction of Mean Flow Characteristics of a Rectangular Turbulent Jet in Crossflow
A jet of fluid discharging into a cross stream, also known as Jet In Crossflow (JICF), has received many experimental and numerical investigations. In addition to the fundamental understanding of threedimensional mixing and shear flow characteristics, the fluid dynamics research community often regarded it as a benchmark test case for validating turbulence models. Although many authors consider...
متن کاملHybrid RANS/LES computation of plane impinging jet flow
Flow characteristics are presented of simulation results of plane impinging jets at high nozzle-plate distances, with two k-ω based hybrid RANS/LES (Reynolds Averaged Navier–Stokes/Large–Eddy Simulation) models and a k-ω RANS model. The first hybrid RANS/LES model is obtained by substitution of the turbulent length scale by the local grid size in the destruction term of the turbulent kinetic en...
متن کاملToward Large-eddy/reynolds-averaged Simulation of Supersonic Combustion
While flamelet-based progress variable models have matured to production-level in recent years for incompressible flows, little development toward compressible formulations of the flamelet model has ensued. For supersonic and hypersonic flows exhibiting combustion, an applicable flamelet-based combustion model must reflect the compressible nature of the flow, the tight coupling of the flow and ...
متن کامل